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Abstract

Body mass index (BMI) is a risk factor for Alzheimer’s disease (AD) although the relationship is complex. Obesity in midlife is associated with 
increased risk for AD, whereas evidence supports both higher and lower BMI increasing risk for AD in late life. This study examined the influence 
of individual differences in genetic risk for AD to further clarify the relationship between late-life BMI and conversion to AD. Participants included 
52 individuals diagnosed as having mild cognitive impairment (MCI) at baseline who converted to AD within 24 months and 52 matched MCI 
participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. BMI was measured at baseline. Genetic risk for AD was 
assessed via genome-wide polygenic risk scores. Conditional logistic regression models were run to determine if BMI and polygenic risk predicted 
conversion to AD. Results showed an interaction between BMI and genetic risk, such that individuals with lower BMI and higher polygenic risk 
were more likely to convert to AD relative to individuals with higher BMI. These results remained significant after adjusting for cerebrospinal fluid 
biomarkers of AD. Exploratory sex-stratified analyses revealed this relationship only remained significant in males. These results show that higher 
genetic risk in the context of lower BMI predicts conversion to AD in the next 24 months, particularly among males. These findings suggest that 
genetic risk for AD in the context of lower BMI may serve as a prodromal risk factor for future conversion to AD.
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Alzheimer’s disease (AD) is a global health concern that is associated 
with significant memory loss and impaired functioning in everyday 
life, causing immense costs and burdens to individuals, their families, 
and health care systems. Approximately 5.8 million Americans are cur-
rently living with AD, and the prevalence of AD is expected to increase 
to 13.8 million by 2050 as the Baby Boomer generation ages (1). AD 
is characterized by a long preclinical period, whereby neural and bio-
logical changes occur prior to noticeable clinical and cognitive symp-
toms, including neurodegeneration and buildup of tau and β-amyloid 
peptide (Aβ) (2,3). Approximately 10%–15% of individuals diagnosed 
with mild cognitive impairment (MCI) progress to AD each year (4). 

There are no known cures for AD, making it particularly important to 
investigate risk and protective factors that could be targeted by inter-
vention techniques to prevent conversion to AD.

Health factors, including body mass index (BMI), are thought to play 
a role in the development of late-onset AD. The relationship between BMI 
in midlife and risk for dementia is well characterized, such that BMI in 
the obese range is associated with heightened risk for AD and other types 
of dementia (5). Obesity is associated with damage to AD-vulnerable 
regions, such as the hippocampus (6), as well as AD-related pathology, 
including Aβ and tau (7). The link between obesity and dementia may 
be, in part, due to inflammation, insulin resistance, oxidative stress, and 
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metabolic and vascular dysregulation (6,8). Furthermore, genetic vari-
ants associated with lower BMI are also associated with higher cognitive 
abilities (9), which may also contribute to the link between obesity and 
dementia. However, the relationship between late-life BMI and dementia 
is less straightforward. Although some work shows that higher BMI is 
associated with increased risk for progression to AD (10), many studies 
have demonstrated a protective effect of higher BMI against risk for de-
mentia (11,12). Moreover, lower BMI in late life has been associated with 
increased AD-related pathology in older adults with cognitive impair-
ment (13). Mechanisms that may explain the relationship between lower 
BMI and AD risk include AD-related damage to brain regions implicated 
in eating-related behavior and weight regulation, and serotonergic and 
noradrenergic system abnormalities (14–17). Further complicating the 
picture, significant relationships between late-life BMI and dementia are 
not always observed, as evidenced in a meta-analysis by Danat et al. (18).

To better understand the relationship between late-life BMI and 
late-onset AD, it is important to consider the influence of genetic risk 
factors; genetics play an integral role in progression to AD and re-
search suggests late-onset AD is highly heritable (60%–80%) (19). 
However, the majority of previous research has examined BMI and 
AD genetic risk independently. The small set of studies that have as-
sessed their combined effects have primarily focused on the role of 
the apolipoprotein E (APOE) ε4 allele, demonstrating that in late life, 
lower BMI among APOE ε4 carriers is associated with greater cogni-
tive decline (20) and AD-related pathology (21). APOE is certainly the 
strongest single genetic predictor of AD, accounting for 13% of the 
phenotypic variance in late-onset AD (22). Nonetheless, polygenic ap-
proaches used to measure genetic propensity for AD integrate APOE 
and numerous other genetic variants into a single risk score and can 
explain more phenotypic variance in AD than single candidate genes 
(22). Polygenic scores for AD have been independently associated with 
various neurobiological markers of AD, including cortical thickness 
(23), hippocampal and entorhinal cortex volume, neurofibrillary tan-
gles, and neuritic plaques (24). Our recent work demonstrated that 
higher BMI and higher polygenic risk were associated with lower 
volume in medial temporal lobe regions in older adults with normal 
cognition (25). One limitation of this previous study was that it was 
cross-sectional, and thus the direct relationships between BMI, genetic 
risk, and conversion to AD could not be examined.

The primary goal of this study was to examine the interactive 
effects of polygenic risk for AD and BMI at baseline in predicting 
conversion to AD within 24 months using the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database. Additionally, given data 
showing sex differences in the relationship between BMI and de-
mentia (26) and an interaction between BMI and genetics on 
AD-related pathology (25), we also implemented exploratory ana-
lyses to examine the relationship between BMI, polygenic risk 
for AD, and progression to AD separately in males and females. 
Investigating the interactive effects of health and genetic factors lon-
gitudinally has implications for developing prevention methods to 
delay or preclude conversion to AD, as well as clinical utility for 
identifying individuals at heightened risk for future conversion.

Method

Participants
Data were obtained from the ADNI database (adni.loni.usc.edu). 
ADNI was launched in 2004 as a public–private partnership, led by 
Principal Investigator Michael W. Weiner, MD. The primary goal of 
ADNI has been to test whether serial magnetic resonance imaging, 

positron emission tomography, other biological markers, and clinical 
and neuropsychological assessment can be combined to measure the 
progression of MCI and early AD. Additional information can be 
found at www.adni-info.org.

To generate our final sample, we first considered all individuals 
with available polygenic risk scores (n = 685). Polygenic risk scores 
were calculated as part of another study for a subset of ADNI par-
ticipants with available demographic, neuroimaging, and genome-
wide genotype data. Moreover, polygenic risk scores were only 
calculated for participants who identified as White, non-Hispanic/
Latino to avoid population stratification effects. Next, we identi-
fied participants who also had available demographic data at the 
baseline and 24-month visits, as well as height and weight data at 
baseline (n = 520). Next, we identified participants who were diag-
nosed as early MCI (EMCI) or late MCI (LMCI) at the baseline 
visit (n = 305). Of these 305 participants, 52 individuals converted 
to AD within 24  months. The remaining 253 participants were 
considered for inclusion as matched participants. To generate our 
matched participants, we first excluded anyone who changed diag-
nostic categories from baseline to 24 months (n = 25). Next, we used 
the R function matchControls to select 52 of these 228 individuals 
to serve as matched participants in the final sample. These parti-
cipants were specifically matched to individuals who converted to 
AD based on age, sex, education, and baseline diagnosis. The final 
sample of 104 older adults aged 55–84 years who were diagnosed 
with MCI at baseline included 52 individuals who converted to AD 
within 24  months (referred to as “MCI–AD” for brevity) and 52 
matched individuals who did not convert to AD within 24 months 
(referred to as “MCI–MCI”) (see Figure 1).

Exclusion criteria included any neurological disease other than 
developing or suspected AD, such as, but not limited to, Parkinson’s 
disease, multi-infarct dementia, Huntington’s disease, and multiple 
sclerosis. Moreover, individuals with mental health diagnoses were 
excluded, including major depression, bipolar disorder, schizo-
phrenia, and alcohol/substance abuse/dependence. Similarly, all 
participants had to score less than 6 on the Geriatric Depression 
Scale (Short Form); scores 0–5 are not indicative of depression and 
scores 6–15 are indicative of depression. Individuals were also ex-
cluded if they presented with a history of significant head trauma. 
To minimize the likelihood of including individuals presenting with 
dementias other than AD, all participants had to score less than or 
equal to 4 on the Hachinski Ischemic Scale and show no evidence 
of infection, infarction, focal lesion, multiple lacunes, or lacunes 
in memory structures on the baseline MRI scan. Additional details 

Figure 1. Flow chart detailing generation of the final sample.
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about inclusion/exclusion criteria in ADNI can be found in the 
ADNI protocol (http://adni.loni.usc.edu/methods/documents/).

EMCI, LMCI, and AD were defined according to ADNI’s diag-
nostic criteria, which are described below and can be found in greater 
detail in the ADNI protocol (http://adni.loni.usc.edu/methods/docu-
ments/). EMCI was defined as subjective memory concern, abnormal 
memory functioning on the Logical Memory II subscale (Delayed 
Paragraph Recall, Paragraph A) of the Wechsler Memory Scale—
Revised (ie, 9–11 for 16+ years of education, 5–9 for 8–15  years 
of education, 3–6 for 0–7  years of education), Mini-Mental State 
Examination (MMSE) score between 24 and 30, Clinical Dementia 
Rating of 0.5 with the memory box score being at least 0.5, and 
did not meet criteria for AD. LMCI had the same criteria as EMCI, 
except the abnormal memory function on the Logical Memory II 
subscale had to be more severe than the criteria for EMCI (ie, ≤ 8 
for 16+ years of education, ≤ 4 for 8–15 years of education, ≤ 2 for 
0–7 years of education). AD was defined as subjective memory con-
cern, abnormal memory function on the Logical Memory II subscale 
(used the same criteria as LMCI), MMSE between 20 and 26, a 
Clinical Dementia Rating of 0.5 or 1.0, and met NINCSD/ADRDA 
criteria for probable AD. Study procedures were approved by site-
specific Institutional Review Boards and all participants and/or au-
thorized representatives provided written informed consent.

Body Mass Index
Height (inches or centimeters) and weight (pounds or kilograms) were 
measured at baseline for all participants. Height measurements were 
converted to meters and weight measurements were converted to kilo-
grams. BMI was calculated using the formula: [weight (kilograms)/
height (meters)2]. There were 25 individuals categorized as normal 
weight (18.5 ≤ BMI < 25), 56 individuals categorized as overweight 
(25 ≤ BMI < 30), and 23 individuals categorized as obese (BMI ≥ 30). 
There were no individuals categorized as underweight (BMI < 18.5).

Polygenic Risk Score Calculation and Genotyping 
Procedures
We calculated genome-wide polygenic risk scores using beta values 
to weight all single nucleotide polymorphisms (SNPs) from a 
genome-wide association study (GWAS), multiplied these weights 
by the additively coded genotypes (ie, 0, 1, 2), then summed them 
together to create a single risk score for AD. Our polygenic risk 
scores integrated all SNPs under a specific p value threshold and 
were calculated across multiple p value thresholds, as there is no way 
to predetermine the most predictive threshold. The most predictive 
score was used for further analyses and was operationalized as the 
threshold exhibiting the strongest relationship with conversion to 
AD (described in greater detail below).

The polygenic risk scores for AD in the present study were cal-
culated based on summary statistics from the largest and most re-
cent GWAS on AD, which was conducted on individuals from the 
International Genomics of Alzheimer’s Disease Project (IGAP) who 
identify as White and non-Hispanic (27). The summary results 
are available for download at https://www.niagads.org/datasets/
ng00075. The risk scores in the present study excluded SNPs 
with Impute2 quality <0.50 and/or minor allele frequency <0.01. 
Furthermore, to prevent redundancy, the SNP panel was trimmed 
for linkage disequilibrium using PLINK’s “clumping” procedure 
prior to imputation (r2 threshold of .2 in a 500 kb window based on 
linkage disequilibrium patterns in the 1 000 Genomes EUR sample). 
Polygenic risk scores were computed across 13 p value thresholds: 

p < 1 × 10–8, p < 1 × 10–7, p < 1 × 10–6, p < 1 × 10–5, p < 1 × 10–4, 
p < 1 × 10–3, p < .01, p < .05, p < .1, p < .2, p < .3, p < .4, and p < .5.

Genome-wide genotyping was performed using the Illumina 
HumanOmniExpress BeadChip and processed via GenomeStudio 
v2011.1 (Illumina). APOE was genotyped using DNA from a blood 
sample. Additional details regarding the genome-wide and APOE 
genotyping procedures used in ADNI are available elsewhere (28).

Cerebrospinal Fluid Biomarkers
Cerebrospinal fluid (CSF) Aβ, total tau, and phosphorylated tau 
(p-tau) were analyzed at the UPenn/ADNI Biomarker laboratory 
using the fully automated Roche Elecsys immunoassay (29). The 
Elecsys Aβ CSF immunoassay in use is not a commercially available 
in vitro diagnostic assay; it is currently under development and for 
investigational use only. The measuring range of the assay is 200 
(lower technical limit) to 1 700 pg/mL (upper technical limit). The 
performance of the assay beyond the upper technical limit has not 
been formally established. Therefore, use of values above the upper 
technical limit, which are provided based on an extrapolation of 
the calibration curve, is restricted to exploratory research purposes 
and is excluded for clinical decision making or for the derivation 
of medical decision points. In our sample, 14 participants had Aβ 
values greater than the upper technical limit, which were truncated 
to 1 700. No participants had values below the lower technical limit 
for Aβ or outside of the technical limits for tau (80–1 300 pg/mL) or 
p-tau (8–120 pg/mL).

Statistical Approach
Statistical analyses were performed using R version 3.6.1 for 
Macintosh. MCI–AD and MCI–MCI participants were compared on 
relevant demographic and outcome variables using Mann–Whitney 
U tests for continuous variables, as normality was violated for all 
variables assessed, and Fisher’s exact tests for categorical variables. 
Baseline BMI and all polygenic risk scores were standardized prior 
to analyses. To determine the most predictive polygenic risk score 
threshold to be used in subsequent analyses, conditional logistic 
regression models were used to examine the effect of genetic risk 
for AD on conversion to AD within 24 months across all 13 poly-
genic risk score p value thresholds. We chose the polygenic risk score 
threshold that showed the strongest relationship (ie, most signifi-
cant p value) with conversion to AD. The score computed at this 
threshold was used in all further analyses.

Using hierarchical conditional logistic regression models, our pri-
mary analysis was to examine the relationship between BMI and 
polygenic risk on progression to AD. In the first model, the main 
effects of BMI and the most significant polygenic score were entered. 
In the second model, the BMI × polygenic score interaction term 
was entered. Covariates were not included in the conditional logistic 
regression models, as MCI–AD and MCI–MCI participants were 
matched on relevant covariates (age, sex, education, and baseline 
diagnosis).

Secondarily, we sought to determine if BMI and polygenic risk 
could explain conversion to AD over and above well-known bio-
markers of AD (3). As such, we replicated the BMI × polygenic risk 
logistic regressions described above including Aβ, tau, and p-tau as 
covariates. Three participants were missing these CSF biomarkers, 
which broke MCI–AD/MCI–MCI matching and therefore, uncon-
ditional logistic regression models were fit for these analyses. As 
such, we also included age, sex, education, and baseline diagnosis as 
covariates. In the first model, age, sex, education, baseline diagnosis, 
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Aβ, tau, and p-tau were entered. In the second model, polygenic risk 
and BMI were entered. In the third model, the BMI × polygenic score 
interaction term was entered. We calculated Nagelkerke’s pseudo-R2 
and area under the curve (AUC) as measures of goodness of fit and 
diagnostic accuracy, respectively, for unconditional logistic regression 
models; AUC of 0.5–0.7 suggests poor discrimination, 0.7–0.8 sug-
gests acceptable discrimination, and 0.8–0.9 suggests excellent dis-
crimination (30).

We also implemented our primary and secondary analyses de-
scribed above separately in males and females to examine sex 
differences in the relationship between BMI, polygenic risk, and con-
version to AD. Due to small sample sizes when the overall sample is 
stratified into males (n = 62) and females (n = 42), these analyses are 
exploratory and findings should be considered provisional.

To ensure our results were not being driven by outliers, we rep-
licated all analyses after excluding 2 bivariate outliers with respect 
to BMI and polygenic risk (31); results were similar and therefore 
the final results do not exclude outliers. We also considered the con-
tribution of cerebrovascular risk factors that are commonly associ-
ated with BMI and risk for AD, including smoking, hypertension, 
diabetes, and hypercholesterolemia/hyperlipidemia. These factors 
were not significant predictors and are therefore not reported in the 
final results. Additionally, we implemented correlation analyses to 
examine the relationship between polygenic risk for AD and cog-
nition at baseline and BMI and cognition at baseline to determine 
if cognitive functioning may be confounding the observed relation-
ships between BMI, polygenic risk, and conversion to AD. Cognitive 
status at baseline, as measured via the MMSE, Alzheimer’s Disease 
Assessment Scale 13, and Clinical Dementia Rating sum of boxes, 
was not associated with polygenic risk for AD or BMI. As such, cog-
nition was not included as a covariate in the final models.

Results

Demographics of the entire sample and as a function of MCI–AD/MCI–
MCI status are shown in Table 1. There were no significant differences 
between the groups in terms of age, sex, education, or baseline diagnosis, 
indicating that MCI–AD/MCI–MCI matching was successful. There 
were also no significant differences between MCI–AD and MCI–MCI 
participants in terms of BMI. There was a significant difference in APOE 
ε4 alleles between MCI–AD and MCI–MCI participants (p  =  .006). 
Furthermore, MCI–AD participants had significantly lower CSF Aβ (re-
flecting greater intracranial Aβ burden) (U = 1 813, p < .001), higher 
tau (U = 637, p < .001), and higher p-tau (U = 599, p < .001). The con-
ditional logistic regression models indicated the strongest main effect of 
polygenic risk score at the p < 1 × 10–6 threshold (see Supplementary 
Table 1 for results at each p value threshold). At this threshold (p < 1 × 
10–6), MCI–AD participants had significantly higher polygenic risk 
for AD than MCI–MCI participants (U = 877, p = .002). The genetic 
architecture of late-onset AD is yet to be fully elucidated; however, re-
cent work suggests p value thresholds that are more stringent may be 
indicative of an oligogenic architecture, whereas more lenient p value 
thresholds may be indicative of a polygenic architecture (32). The op-
timal polygenic risk threshold here is stringent, which supports the inter-
pretation that the genetic risk of AD reflects an oligogenic architecture.

Overall Sample
Interaction between BMI and polygenic risk score
Hierarchical conditional logistic regression models revealed a sig-
nificant interaction between BMI and polygenic risk (computed at 

the p < 1 × 10–6 threshold) in the overall sample (OR = 0.49, 95% 
CI  =  0.25–0.96, p  =  .036; see Table 2). This interaction can be 
thought of as indicating that the association between polygenic risk 
and conversion to AD differed as a function of BMI or conversely 
that the effect of BMI differed as a function of polygenic risk. To fur-
ther clarify the interaction between BMI and polygenic risk on con-
version to AD, we ran follow-up, unconditional, hierarchical logistic 
regressions for lower/higher BMI groups (based on median split; 
unstandardized median  =  26.74, standardized median  =  −0.23). 
Unconditional logistic regressions were fit since MCI–AD/MCI–
MCI matching was broken with the median split. Demographics and 
statistical comparisons of lower/higher BMI groups are shown in 
Supplementary Table 2. In the first model, covariates (age, sex, edu-
cation, and baseline diagnosis) were entered. In the second model, 
polygenic risk score was entered. Results revealed that among in-
dividuals with lower BMI, polygenic risk score significantly pre-
dicted conversion to AD (OR = 2.91, 95% CI = 1.51–6.42, p = .003, 
Nagelkerke’s R2 = .31, AUC = 0.78). Among individuals with higher 
BMI, polygenic risk did not significantly predict conversion to AD 
(OR = 1.27, 95% CI = 0.69–2.39, p = .451, Nagelkerke’s R2 = .07, 
AUC = 0.63).

CSF biomarker analyses
We next conducted hierarchical unconditional logistic regressions 
with CSF biomarkers to determine if BMI and polygenic risk could 
predict conversion to AD after adjusting for core biomarkers of 
AD. Age, sex, education, baseline diagnosis, Aβ, tau, and p-tau sig-
nificantly predicted conversion to AD with excellent diagnostic ac-
curacy [χ 2 (7, N = 101) = 33.31, p < .001, Nagelkerke’s R2 =  .41, 
AUC = 0.80]. Adding polygenic risk and BMI in model 2 [Δχ 2 (2, 
N  =  101)  =  2.37, p  =  .306, Nagelkerke’s R2  =  .43, AUC  =  0.81] 

Table 1. Demographics of the Overall Sample, MCI–AD, and MCI–
MCI Participants

Totala MCI–ADb MCI–MCIc p Value

Mean (SD) Mean (SD) Mean (SD)  

Age, y 71.8 (7.01) 71.9 (7.42) 71.7 (6.64) .687

Sex, N (%)

 Female 42 (40.4%) 21 (40.4%) 21 (40.4%)  

 Male 62 (59.6%) 31 (59.6%) 31 (59.6%) 1

Years of education 16.0 (2.49) 15.9 (2.60) 16.1 (2.39) .711

Baseline diagnosis, N (%)

 EMCI 22 (21.2%) 11 (21.2%) 11 (21.2%)  

 LMCI 82 (78.8%) 41 (78.8%) 41 (78.8%) 1

Polygenic risk scored 0.00 (1.00) 0.30 (0.97) −0.30 (0.95) .002*

BMIe 28.0 (5.16) 27.9 (6.14) 28.0 (4.01) .136

APOE ε4 allelesf, N (%)

 0 46 (44.2%) 15 (28.8%) 31 (59.6%)  

 1 41 (39.4%) 26 (50.0%) 15 (28.8%)  

 2 17 (16.3%) 11 (21.2%) 6 (11.5%) .006*

Aβ 915 (424) 749 (305) 1090 (462) <.001*

Tau 318 (152) 380 (163) 252 (107) <.001*

P-tau 31.2 (17.4) 38.3 (18.2) 23.6 (12.7) <.001*

Notes: Aβ = β-amyloid peptide; APOE = apolipoprotein E; BMI = body 
mass index; EMCI = early mild cognitive impairment; LMCI = late mild cog-
nitive impairment; p-tau = phosphorylated tau.

aN = 104. bN = 52. cN = 52. dStandardized value. eUnstandardized value. 
fCitation: Li et al. (33).

*p < .05.
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did not significantly improve the overall model. Adding the  
BMI × polygenic risk interaction in model 3 significantly improved 
the overall model [Δχ 2 (1, N = 101) = 5.48, p = .019, Nagelkerke’s 
R2 = .48, AUC = 0.83].

Sex-Stratified Samples
Interaction between BMI and polygenic risk score
Sex differences in the relationship between BMI and polygenic risk 
on conversion to AD were explored next. Demographics and statis-
tical comparisons of males and females are shown in Supplementary 
Table 3. Among males, there was a significant interaction between 
BMI and polygenic risk on conversion to AD (OR  =  0.28, 95% 
CI = 0.09–0.85, p =  .025; see Supplementary Table 4). Among fe-
males, there was no significant interaction between BMI and poly-
genic risk (OR  =  1.18, 95% CI  =  0.28–4.97, p  =  .821) or main 
effect of BMI (OR = 1.17, 95% CI = 0.59–2.30, p =  .649); how-
ever, there was a main effect of polygenic score on conversion to 
AD (OR = 2.52, 95% CI = 1.07–5.93, p = .034; see Supplementary 
Table 5).

To further clarify the interaction between BMI and polygenic 
risk score on progression to AD in males, we ran follow-up, un-
conditional, hierarchical logistic regressions for lower/higher BMI 
groups (based on median split; unstandardized median  =  27.57, 
standardized median  =  −0.07), as described above for the overall 
sample. Results revealed that among males with lower BMI, poly-
genic risk score significantly predicted conversion to AD (OR = 2.99, 
95% CI = 1.32–8.31, p = .017, Nagelkerke’s R2 = .37, AUC = 0.81). 
Among males with higher BMI, polygenic risk did not significantly 
predict conversion to AD (OR = 0.95, 95% CI = 0.42–2.09, p = .905, 
Nagelkerke’s R2 = .04, AUC = 0.59).

CSF biomarker analyses
Hierarchical unconditional logistic regressions revealed the sex-
stratified results remained significant after adjusting for Aβ, tau, and 
p-tau. In males, age, education, baseline diagnosis, Aβ, tau, and p-tau 
predicted conversion to AD with excellent diagnostic accuracy [χ 2 
(6, N = 61) = 22.12, p = .001, Nagelkerke’s R2 = .42, AUC = 0.81]. 
Adding polygenic risk and BMI in model 2 [Δχ 2 (2, N = 61) = 2.74, 
p = .255, Nagelkerke’s R2 = .46, AUC = 0.83] did not significantly 
improve the overall model. Adding the BMI × polygenic risk inter-
action in model 3 significantly improved the overall model [Δχ 2 (1, 
N = 61) = 10.59, p = .001, Nagelkerke’s R2 = .60, AUC = 0.89]. In 
females, age, education, baseline diagnosis, Aβ, tau, and p-tau pre-
dicted conversion to AD with excellent diagnostic accuracy [χ 2 (6, 
N  =  40)  =  16.25, p  =  .012, Nagelkerke’s R2  =  .50, AUC  =  0.87]. 
Adding polygenic risk and BMI in model 2 [Δχ 2 (2, N = 41) = 1.70, 
p = .427, Nagelkerke’s R2 = .53, AUC = 0.85] and the BMI × poly-
genic risk interaction in model 3 [Δχ 2 (1, N = 41) = 0.11, p = .740, 

Nagelkerke’s R2 = .53, AUC = 0.87] did not significantly improve the 
overall model.

Discussion

This study examined the relationship between BMI, polygenic risk 
for AD, and conversion to AD within 24 months. There were 2 pri-
mary findings. First, the interaction between BMI and polygenic risk 
predicted conversion to AD, such that lower BMI and higher poly-
genic risk increased likelihood of conversion, whereas there was no 
association between polygenic risk and conversion among individ-
uals with higher BMI; this finding remained significant even after 
adjusting for the effects of Aβ, tau, and p-tau. Second, exploratory 
analyses revealed that the relationship between BMI, polygenic risk, 
and conversion to AD was more pronounced in males.

The results presented here show that 24 months prior to an 
AD diagnosis, lower BMI, in combination with greater genetic 
risk for AD, is associated with conversion to AD. Genetic risk 
for AD is associated with alterations and atrophy in various 
brain regions, including the amygdala, hippocampus, and other 
medial temporal regions (24,34–36), as well as differential gene 
expression in regions implicated in AD, such as temporal re-
gions (37). Inflammation and oxidative stress are 2 specific path-
ways that genetic risk for AD likely acts through to facilitate 
neurodegeneration (38–40). One interpretation of our results is 
that lower BMI acts through, and exacerbates, these genetic path-
ways. It is often proposed that lower BMI in the 10  years pre-
ceding an AD diagnosis is a consequence of AD pathology (41); 
AD pathology may induce damage to brain regions that are im-
plicated in eating-related behavior and weight regulation, such as 
the amygdala, hypothalamus, cingulate gyrus, hippocampus, and 
other medial temporal regions (14–17), leading to body weight 
loss and consequently lower BMI. AD pathology may specific-
ally induce damage to these regions through oxidative stress and 
inflammation (38,40). This suggests that higher genetic risk for 
AD and AD-related damage contributing to lower BMI may af-
fect the same neural pathways; therefore, these 2 risk factors in 
combination may lead to greater neurobiological disruptions and 
consequently increase the risk of clinical manifestation of AD. 
Nevertheless, additional work is needed to elucidate the specific, 
synergistic mechanisms underlying this interaction. One specific 
factor that warrants consideration and should be further investi-
gated is the role of sarcopenia (ie, losing muscle mass and func-
tion). Sarcopenia is associated with lower BMI (42) and may be 
caused by AD-related pathology, including oxidative stress and 
inflammation (43), both of which are also genetic pathways of 
AD (39). Thus, sarcopenia may mediate the relationship between 
BMI, genetic risk for AD, and conversion to AD. Another factor 

Table 2. Summary of Conditional Logistic Regression Analysis for Association With Conversion to AD in the Overall Sample

Model 1 Model 2

Variable Adjusted OR 95% CI p Value Adjusted OR 95% CI p Value

BMI 1.06 0.70–1.62 .769 1.02 0.66–1.57 .928
PRS 1.77 1.15–2.71 .009** 1.78 1.11–2.84 .016*
BMI × PRS    0.49 0.25–0.96 .036*
Model LRT 8.21*   13.31**   

Notes: BMI = body mass index; LRT = likelihood ratio test; PRS = polygenic risk score. BMI and PRS were standardized prior to analyses.
*p < .05. **p < .01.
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that warrants consideration is frailty, which is characterized, in 
part, by weight loss (44) and is associated with increased risk for 
dementia (45), including AD (46). Furthermore, frailty is asso-
ciated with inflammation (47) and oxidative stress (48), further 
demonstrating that it may contribute to the observed relation-
ship between BMI, genetic risk for AD, and conversion to AD. 
A  second interpretation of these findings that warrants consid-
eration is that there is a protective effect of maintaining higher 
BMI that may help to counteract the negative pathways of genetic 
risk for AD. Specifically, leptin is a hormone produced by adipose 
tissue that has neuroprotective properties, including hippocampal 
synaptic plasticity and corresponding learning and memory out-
comes (49). As such, the neuroprotective effects of leptin, specif-
ically in regions vulnerable to AD such as the hippocampus, may 
offset some of the negative effects of genetic risk for AD in these 
regions to preclude conversion to AD. Although, to further ex-
plore this interpretation, future work should examine how leptin 
interacts with genetic risk for AD to influence progression to AD.

Findings of this study also showed that the interaction between 
BMI and polygenic risk for AD remained significant after adjusting 
for Aβ, tau, and p-tau, which are some of the most well-known 
biomarkers of AD (3). These results underscore the importance of 
considering health and genetic factors as well as their synergistic ef-
fects when examining risk for late-onset AD, as they have predictive 
power beyond common AD biomarkers and can help us characterize 
this multifactorial disease better than any factor can in isolation. 
Nonetheless, it is important to acknowledge that the effect of BMI 
and genetic factors is relatively small after accounting for the most 
predictive biomarkers of AD.

Our exploratory analyses indicated that the relationship between 
BMI and polygenic risk on conversion to AD was stronger in male 
participants. This finding was initially surprising, as females are at 
greater risk for AD (50) and previous research suggests that the re-
lationship between BMI and dementia (26), as well as BMI, gen-
etics, and AD-related pathology (25), may be stronger in females. 
A potential explanation for the sex differences observed in this study 
considers the role of testosterone, which decreases throughout the 
aging process, specifically among males (51,52), and has been as-
sociated with lower BMI in older males (53). Low testosterone is 
consistently identified as a risk factor for AD (53), specifically during 
the preclinical phase (54), and interacts with APOE ε4 to confer risk 
for AD (52). Decreased testosterone and genetics may specifically 
interact and increase risk for late-onset AD via inflammatory path-
ways (38,51), although additional work is needed to clarify the role 
of testosterone in the relationship between BMI and genetic risk for 
AD on AD risk, specifically among males. Furthermore, due to small 
sample sizes, these findings should be considered provisional and 
should be replicated with larger sample sizes.

This study has several limitations. First, while it is beneficial that 
this study was able to examine BMI, genetics, and progression to 
AD longitudinally, ADNI does not collect data on BMI prior to the 
baseline assessment. As such, the relationship between lifetime BMI, 
genetic risk, and late-onset AD could not be examined. Furthermore, 
it would be useful to examine the relationship between late-life BMI 
and progression to AD over a longer period of time. However, at-
trition in ADNI increases at later timepoints; we chose to preserve 
power and minimize non-random dropout that may bias results, 
which consequently sacrificed the ability to examine this relationship 
over a longer timeframe (ie, 4–5 years). Additional work is needed 
to examine the relationship between BMI at various points across 
the life span, genetic risk for AD, and AD, including earlier in the 

disease process as some of the neurobiological changes of AD begin 
to develop. Similarly, future work should also examine the interplay 
between BMI and polygenic risk on the progression from cognitively 
normal to MCI. While we selected the timeframe of this study to 
maximize power, our sample is still relatively small and is therefore 
another limitation of the current study. Until this study can be rep-
licated with additional, larger sample sizes, the findings should be 
considered provisional. Risk for AD is also influenced by various 
lifestyle factors, such as physical activity, diet, mental stimulation, 
and social engagement (55). These variables were not assessed in 
ADNI and therefore we could not determine how these factors may 
contribute to conversion in the present study, which is another limi-
tation of this study. Similarly, ADNI does not collect data on midlife 
and therefore the influence of various vascular and lifestyle factors 
in midlife on conversion to AD in late life could not be examined. 
Another limitation of this study is that our sample did not include 
any individuals categorized as underweight. Underweight BMI, gen-
etic risk, and progression to AD should be examined, as there is evi-
dence that late-life, underweight BMI may increase dementia risk 
(56). Finally, our sample only included older adults who identify as 
White, non-Hispanic/Latino and additional work is needed to clarify 
how BMI and genetic risk interact to influence progression to AD in 
other racial and ethnic groups.

In conclusion, this study showed that polygenic risk for AD had 
a greater impact on risk in those with lower BMI on the likelihood 
of conversion to AD within 24 months, specifically among males. 
No association was observed between polygenic risk and AD in indi-
viduals with higher BMI. This interaction remained significant even 
after adjusting for Aβ, tau, and p-tau, the core biomarkers of AD. 
These results suggest that genetic risk for AD in the context of lower 
BMI may serve as a predictor of future progression to AD. Moreover, 
these results may help clinicians identify individuals at heightened 
risk of developing late-onset AD who should be monitored more 
closely for pathological decline and may benefit most from interven-
tions attempting to delay or prevent progression to AD. This study 
underscores the importance of examining the synergistic effects of 
health and genetic risk factors to better characterize late-onset AD, 
which may be used to inform prevention methods.
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